كسي كه هرگز تحت فشار نزيسته باشد، آزادي را لمس نمي كند.
خانه » پروژه » فناوری اطلاعات » دانلود پروژه شبکه های عصبی مصنوعی
دانلود پروژه شبکه های عصبی مصنوعی

دانلود پروژه شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی
Artificial Neural Networks
فهرست مطالب
فصل اول
مقدمه
هوش مصنوعی
به سوی آینده
تاریخچه
تعریف
تاریخچه و تعاریف سیستم‌های خبره
بعضی از تعاریف سیستم های خبره
تاریخچه سیستم های خبره
الگوريتم ژنتيك
تابع سازگاری(FitnessFunction)
Mutation(جهش ژنتیكی)
مقدمه ای بر سیستم های فازی وکنترل فازی25
سيستم‌هاي فازي چگونه سيستم‌هايي هستند؟
سيستم‌هاي فازي كجا و چگونه استفاده مي‌شوند؟
زمينه‌هاي تحقيق عمده در تئوري فازي
تاريخچه مختصري از تئوري و كاربردهاي فازي
فصل دوم
شبکه های عصبی
مقدمه
ساختار مغز
ساختار نرون
چگونه مغز انسان می آموزد ؟
معنای شبکه های عصبی
قوانین هب
از سلول های عصبی انسانی تا سلول های عصبی مصنوعی
رويای جايگزينی ويژگی های مغز در يک سيستم مصنوعی چقدر ممکن گرديده؟
تاريخچه شبكه‌هاي عصبي
چرا از شبکه های عصبی استفاده می کنیم؟
شبکه های عصبی در مقابل کامپیوتر های معمولی
مزايا و محدوديت هاي شبكه عصبي
چه کسانی به شبکه عصبی علاقه‌مند هستند؟
نرم‏افزارها و سخت افزارهاي شبكه‏هاي عصبي
کاربرد شبکه هاي عصبي
یکپارچگی منطق فازی و شبکه های عصبی
مدل ریاضی یک نرون
یک نرون ساده
قوانین برانگیختگی
یک نرون پیچیده تر
ساختار شبکه های عصبی
مراحل طراحی شبکه
اهداف شبکه های عصبی
تقسیم بندی شبکه های عصبی
انواع یادگیری برای شبکه های عصبی
توپولوژی شبکه های عصبی
شبكه‏هاي پيش‏خور (Feed Forward)
شبكه‏هاي برگشتي(Recurrent)
پرسپترون چند لایه
Perceptronهای ساده
قدرت Perceptron
دنباله‌های Perceptron
آموزش پر سپترون
الگوریتم یادگیری پرسپترون
قانون پرسپترون
قانون دلتا
روشهای دیگر
شبکه های هاپفید
شبكه‌هاي داراي پس‌خور
شبکه عصبي ترکيبي المن- جردن
پس انتشار خطا
چند بررسی از کاربرد های شبکه های عصبی
فصل سوم
نتیجه گیری
منابع ومأخذ
فصل اول
مقدمه
هوش محاسباتي يا  (Computational-Intelligence) CI به معناي استخراج هوش، دانش، الگوريتم يا نگاشت از دل محاسبات عددي براساس ارائه به روز داده‌هاي عددي است. سيستم‌هايCI در اصل سيستم‌هاي ديناميكي مدل آزاد (Model-free) را براي تقريب توابع و نگاشتها ارائه مي‌كند. در كنار اين ويژگي بسيار مهم بايد از ويژگي مهم ديگري در ارتباط با خصوصيات محاسباتي سيستم‌هاي CI نام برد، كه در آن دقت، وجه‌المصالحه مقاوم بودن، منعطف‌بودن و سهولت پياده‌سازي قرار مي‌گيرد.
مولفه‌هاي مهم و اساسي CI ، شبكه‌هاي عصبي )محاسبات نوروني(، منطق فازي) محاسبات تقريبي( و الگوريتم ژنتيك) محاسبات ژنتيكي(است، كه هر يك به نوعي مغز را الگو قرار داده‌اند. شبكه‌هاي عصبي ارتباطات سيناپسي و ساختار نوروني، منطق فازي استنتاجات تقريبي و محاسبات ژنتيكي محاسبات موتاسيوني مغز را مدل مي‌كنند. ‍‍‌
هوش مصنوعی
 در شبکه ارتباطی مغز انسانها سیگنالهای ارتباطی به صورت پالسهای الکتریکی هستند.جزء اصلی مغز نرون است که از یک ساختمان سلولی و مجموعه ای از شیارها و خطوط تشکیل شده و شیارها محل ورود اطلاعات به نرون هستند وخطوط محل خروج اطلاعات از نرون اند . نقطه اتصال یک نرون به نرون دیگر را سیناپس می نامند که مانند دروازه یا کلید عمل مي کنند. اگر واکنشهایی که میلیونها نرون مختلف به پالسهای متفاوت نشان میدهند با یکدیگر هماهنگ باشند ممکن است پدیده های مهمی در مغز رخ دهد.
آن دسته از پژوهشگران هوش مصنوعی که رویکرد مدل مغزی را دنبال می کنند گونه ای از مدارهای الکتریکی را طراحی کرده اند که تا حدی شبکه مغز را شبیه سازی میکند در این روش هر گره (نرون)به تنهایی یک پردازنده است ولی رایانه های معمولی حداکثر چند cpuدارند هدف عمده کامپیوتر شبکه عصبی این است که مکانیسمی طراحی کند که همانند مغز انسان بازخورد مثبت یاد بگیرد پاسخهای درست و نادرست کدامند.
سیستم شبکه عصبی این کار را از طریق ارزشگذاری کمی برای ارتباطات سیگنالها بین نرونها انجام میدهد مکانیسم ارزشگذاری توسط مقاومتها با تقویت یا تضعیف پالسها انجام میشود.چون شبکه های عصبی میلیونها نرون دارند خرابی تعدادی از آنها تاثیر چندانی برعملکرد سیستم نمی گذارد تا کنون چند سیستم آزمایشی با استفاده از این اصول طراحی و ساخته شده اند مثلاًدر بررسی های زیست محیطی، شبکه های عصبی برای جمع آوری و تحلیل اطلاعاتی که از راه دور حس شده اند مورد استفاده قرار می گیرند اطلاعاتی که اغلب سفینه ها مخابره می کنند بسیار حجیم است.شبکه های عصبی این اطلاعات را به راحتی دسته بندی کرده وپس از جمع آوری اطلاعات ذهنی و تجسمی نتایج جالبی به دست می آورند (مثلاًتشخیص انواع خاصی از ابرها) البته این فرایند با آنچه سیستم های خبره انجام می دهند متفاوت است زیرا این سیستم ها ابزارهای تصمیم سازی هستند و می توانند حجم زیادی از اطلاعات را به سرعت تحلیل کنند شبکه های عصبی برای مدل سازی فرایندهای فکری-مغزی که زمینه ی دیگری برای مطالعات حساس به اطلاعات و پیچیدگی است مورد استفاده قرار گرفته است ………….

برای خرید اطلاعات خود را وارد کنید
  • کلیه پرداخت های سایت از طریق درگاه بانک سامان انجام می گیرد.هر مرحله از خرید می توانید مشکل خود را با پشتیبان و فرم تماس با ما در جریان بگذارید در سریعترین زمان ممکن مشکل برطرف خواهد شد
  • پس از پرداخت وجه ، فایل محصول هم قابل دانلود می باشد و هم به ایمیل شما ارسال می گردد .
  • آدرس ایمیل را بدون www وارد نمایید و در صورت نداشتن ایمیل فایل به تلگرام شما ارسال خواهد شد .
  • در صورت داشتن هرگونه سوال و مشکل در پروسه خرید می توانید با پشتیبانی سایت تماس بگیرید.
  • پشتیبان سایت با شماره 09383646575 در هر لحظه همراه و پاسخگوی شماست
  • اشتراک گذاری مطلب

    راهنما

    » فراموش نکنید! بخش پشتیبانی مقاله آنلاین ، در همه ساعات همراه شماست

    اطلاعات ارتباطی ما پست الکترونیکی: Article.university@gmail.com

    تماس با پشتیبانی 09383646575

    برای سفارشتان از سایت ما کمال تشکر را داریم.

    از اینکه ما را انتخاب نمودید متشکریم.

    معادله فوق را حل نمایید *

    تمام حقوق مادی , معنوی , مطالب و طرح قالب برای این سایت محفوظ است