خانه » پروژه » برق و الکترونیک و مخابرات » دانلود پروژه ارائه روش جدید جهت حذف نویز آکوستیکی در یک مجرا
دانلود پروژه ارائه روش جدید جهت حذف نویز آکوستیکی در یک مجرا

دانلود پروژه ارائه روش جدید جهت حذف نویز آکوستیکی در یک مجرا

دانلود پروژه ارائه روش جدید جهت حذف نویز آکوستیکی در یک مجرا 
فهرست مطالب
صفحه
چکیده
فصل صفر: مقدمه
فصل اول: مقدمه ای بر کنترل نویز آکوستیکی
۱-۱) مقدمه
۱-۲) علل نیاز به کنترل نویزهای صوتی (فعال و غیر فعال)
۱-۲-۱) بیماری های جسمی
۱-۲-۲) بیماری های روانی
۱-۲-۳) راندمان و کارایی افراد
۱-۲-۴) فرسودگی
۱-۲-۵) آسایش و راحتی
۱-۲-۶ جنبه های اقتصادی
۱-۳) نقاط ضعف کنترل نویز به روش غیرفعال
۱-۳-۱) کارایی کم در فرکانس های پایین
۱-۳-۲) حجم زیاد عایق های صوتی
۱-۳-۳) گران بودن عایق های صوتی
۱-۳-۴) محدودیت های اجرایی
۱-۳-۵) محدودیت های مکانیکی
۱-۴) نقاط قوت کنترل نویز به روش فعال
۱-۴-۱) قابلیت حذف نویز در یک گسترده ی فرکانسی وسیع
۱-۴-۲) قابلیت خود تنظیمی سیستم
۱-۵) کاربرد ANC در گوشی فعال
۱-۵-۱) تضعیف صدا به روش غیر فعال در هدفون
۱-۵-۲) تضعیف صدا به روش آنالوگ در هدفون
۱-۵-۳) تضعیف صوت به روش دیجیتال در هدفون
۱-۵-۴) تضعیف صوت به وسیله ی ترکیب سیستم های آنالوگ و دیجیتال در هدفون
۱-۶) نتیجه گیری
فصل دوم: اصول فیلترهای وفقی
۲-۱) مقدمه
۲-۲) فیلتر وفقی
۲-۲-۱) محیط های کاربردی فیلترهای وفقی
۲-۳) الگوریتم های وفقی
۲-۴) روش تحلیلی
۲-۴-۱) تابع عملکرد سیستم وفقی
۲-۴-۲) گرادیان یا مقادیر بهینه بردار وزن
۲-۴-۳) مفهوم بردارها و مقادیر مشخصه R روی سطح عملکرد خطا
۲-۴-۴) شرط همگرا شدن به٭
۲-۵) روش جستجو
۲-۵-۱) الگوریتم جستجوی گردایان
۲-۵-۲) پایداری و نرخ همگرایی الگوریتم
۲-۵-۳) منحنی یادگیری
۲-۶) MSE اضافی
۲-۷) عدم تنظیم
۲-۸) ثابت زمانی
۲-۹) الگوریتم LMS
۲-۹-۱) همگرایی الگوریتم LMS
۲-۱۰) الگوریتم های LMS اصلاح شده
۲-۱۰-۱) الگوریتم LMS نرمالیزه شده (NLMS)
۲-۱۰-۲) الگوریتم های وو LMS علامتدار وو (SLMS)
۲-۱۱) نتیجه گیری
فصل سوم: اصول کنترل فعال نویز
۳-۱) مقدمه
۳-۲) انواع سیستم های کنترل نویز آکوستیکی
۳-۳) معرفی سیستم حذف فعال نویز تک کاناله
۳-۴) کنترل فعال نویز به روش پیشخور
۳-۴-۱) سیستم ANC پیشخور باند پهن تک کاناله
۳-۴-۲) سیستم ANC پیشخور باند باریک تک کاناله
۳-۵) سیستم های ANC پسخوردار تک کاناله
۳-۶) سیستم های ANC چند کاناله
۳-۷) الگوریتم هایی برای سیستم های ANC پسخوردار باند پهن
۳-۷-۱) اثرات مسیر ثانویه
۳-۷-۲) الگوریتم FXLMS
۳-۷-۳) اثرات فیدبک آکوستیکی
۳-۷-۴) الگوریتم Filtered- URLMS
۳-۸) الگوریتم های سیستم ANC پسخوردار تک کاناله
۳-۹) نکاتی درباره ی طراحی سیستم های ANC تک کاناله
۳-۹-۱) نرخ نمونه برداری و درجه ی فیلتر
۳-۹-۲) علیت سیستم
۳-۱۰) نتیجه گیری
فصل چهارم: شبیه سازی سیستم ANC تک کاناله
۴-۱) مقدمه
۴-۲) اجرای الگوریتم FXLMS
۴-۲-۱) حذف نویز باند باریک فرکانس ثابت
۴-۲-۲) حذف نویز باند باریک فرکانس متغیر
۴-۳) اجرای الگوریتم FBFXLMS
۴-۴) نتیجه گیری
فصل پنجم: کنترل غیرخطی نویز آکوستیکی در یک ماجرا
۵-۱) مقدمه
۵-۲) شبکه عصبی RBF
۵-۲-۱) الگوریتم آموزشی در شبکه ی عصبی RBF
۵-۲-۲) شبکه عصبی GRBF
۵-۳) شبکه ی TDNGRBF
۵-۴) استفاده از شبکه ی TDNGRBF در حذف فعال نویز
۵-۵) نتیجه گیری
فصل ششم: نتیجه گیری و پیشنهادات
۶-۱) نتیجه گیری
۶-۲) پیشنهادات
مراجع
چکیده
تاکنون برای حذف نویزهای آکوستیکی از روش های فعال[۱] و غیر فعال[۲]استفاده شده است. برخلاف روش غیر فعال می‌توان بوسیله‌ی روش فعال، نویز را در فرکانس های پایین (زیر ۵۰۰ هرتز)، حذف و یا کاهش داد. در روش فعال از سیستمی استفاده می شود که شامل یک فیلتر وفقی است. به دلیل ردیابی خوب فیلتر [۳] LMS در محیط نویزی، الگوریتم FXLMS[4] بعنوان روشی پایه ارائه شده است. اشکال الگوریتم مذکور این است که در مسائل کنترل خطی استفاده می شود. یعنی اگر فرکانس نویز متغیر باشد و یا سیستم کنترلی بصورت غیرخطی کار کند، الگوریتم فوق به خوبی کار نکرده و یا واگرا می شود.
بنابراین در این پایان نامه، ابتدا به ارائه ی گونه ای از الگوریتم FXLMS می پردازیم که قابلیت حذف نویز، با فرکانس متغیر، در یک مجرا و در کوتاه‌ترین زمان ممکن را دارد. برای دستیابی به آن می توان از یک گام حرکت وفقی بهینه () در الگوریتم FXLMS استفاده کرد. به این منظور محدوده ی گام حرکت بهینه در فرکانس های ۲۰۰ تا ۵۰۰ هرتز را در داخل یک مجرا محاسبه کرده تا گام حرکت بهینه بر حسب فرکانس ورودی به صورت یک منحنی اسپلاین مدل شود. حال با تخمین فرکانس سیگنال ورودی به صورت یک منحنی اسپلاین مدل شود. حال با تخمین فرکانس سیگنال ورودی بوسیله ی الگوریتم MUSIC[5] ، را از روی منحنی برازش شده، بدست آورده و آن را در الگوریتم FXLMS قرار می‌دهیم تا همگرایی سیستم در کوتاه‌ترین زمان، ممکن شود. در نهایت خواهیم دید که الگوریتم FXLMS معمولی با گام ثابت با تغییر فرکانس واگرا شده حال آنکه روش ارائه شده در این پایان نامه قابلیت ردگیری نویز با فرکانس متغیر را فراهم می آورد.
همچنین‌به دلیل‌ماهیت غیرخطی سیستم‌های‌ANC ، به ارائه‌ی نوعی شبکه‌ی عصبی‌ RBF TDNGRBF ) [6] ( می‌پردازیم که توانایی مدل کردن رفتار غیرخطی را خواهد داشت. سپس از آن در حذف نویز باند باریک فرکانس متغیر در یک مجرا استفاده کرده و نتایج آن را با الگوریتم FXLMS مقایسه می کنیم. خواهیم دید که روش ارائه شده در مقایسه با الگوریتم FXLMS، با وجود عدم نیاز به تخمین مسیر ثانویه، دارای سرعت همگرایی بالاتر (۳ برابر) و خطای کمتری (۳۰% کاهش خطا) است. برای حذف فعال نویز به روش TDNGRBF، ابتدا با یک شبکه ی GRBF به شناسایی مجرا می‌پردازیم. سپس با اعمال N تاخیر زمانی از سیگنال ورودی به N شبکه ی GRBF (با ترکیب خطی در خروجی آنها)، شناسایی سیستم غیرخطی بصورت بر خط امکان پذیر می شود. ضرایب بکار رفته در ترکیب خطی با استفاده از الگوریتم [۷]NLMS بهینه می شوند.

برای خرید اطلاعات خود را وارد کنید
  • کلیه پرداخت های سایت از طریق درگاه بانک سامان انجام می گیرد.هر مرحله از خرید می توانید مشکل خود را با پشتیبان و فرم تماس با ما در جریان بگذارید در سریعترین زمان ممکن مشکل برطرف خواهد شد
  • پس از پرداخت وجه ، فایل محصول هم قابل دانلود می باشد و هم به ایمیل شما ارسال می گردد .
  • آدرس ایمیل را بدون www وارد نمایید و در صورت نداشتن ایمیل فایل به تلگرام شما ارسال خواهد شد .
  • در صورت داشتن هرگونه سوال و مشکل در پروسه خرید می توانید با پشتیبانی سایت تماس بگیرید.
  • پشتیبان سایت با شماره 09383646575 در هر لحظه همراه و پاسخگوی شماست
  • اشتراک گذاری مطلب

    راهنما

    » فراموش نکنید! بخش پشتیبانی مقاله آنلاین ، در همه ساعات همراه شماست

    اطلاعات ارتباطی ما پست الکترونیکی: Article.university@gmail.com

    تماس با پشتیبانی+ ایدی تلگرام 09383646575

    برای سفارشتان از سایت ما کمال تشکر را داریم.

    از اینکه ما را انتخاب نمودید متشکریم.

    معادله فوق را حل نمایید *

    تمام حقوق مادی , معنوی , مطالب و طرح قالب برای این سایت محفوظ است