خانه » پروژه » مدیریت و حسابداری » دانلود مقاله کنترل کیفیت محصولات با بهره‌گیری از شبکه
دانلود مقاله کنترل کیفیت محصولات با بهره‌گیری از شبکه

دانلود مقاله کنترل کیفیت محصولات با بهره‌گیری از شبکه

مقاله کنترل کیفیت محصولات با بهره‌گیری از شبکه ART غیر دقیق

چکیده

به‌منظور تولید محصولات با کیفیت ثابت، مناسب است تا نظام‌های تولید برای جلوگیری از هرگونه انحراف غیرطبیعی در شرایط فرایند، نظارت شوند. چارت‌های کنترلی نقش مهمی در حل مشکلات کنترل کیفیت دارند؛ با وجود این اثربخشی آنان به شدت به فرضیات آماری بستگی دارد که در کاربردی واقعی صنعتی غالباً زیر پا گذاشته می‌شوند. برخلاف شبکه‌های عصبی می‌توانند میزان بسیار زیادی از داده‌های مخل را در زمان واقعی تشریح کنند،

بدون آنکه نیازمند فرضیات توزیع آماری‌سنجهای نظارت شده داشته باشند. این ویژگی مهم شبکه‌های عصبی را مبدل به ابزارهایی توانمند می‌کند که می‌توان برای بهبود تجزیه و تحلیل داده‌ها در کاربردهای کنترل کیفیت محصولات از آنها بهره گرفت. در این مقاله، نظام شبکه عصبی که برمبنای فاز آموزش غیر نظارتی است، برای کنترل کیفیت معرفی می‌شود. به‌ویژه نظریه تشدید قابل سازگاری ART به‌منظور تحقق نظام کنترل کیفیت فارغ از مدل مورد بحث قرار گرفته است.

که می‌تواند برای تشخیص تغییرات در فرایند تولید مورد بهره‌برداری قرار گیرد. هدف از این تحقیق، تجزیه و تحلیل عملکرد شبکه عصبی ART است با این فرض که الگوهای غیرطبیعی در دسترس نیستند. برای رسیدن به این هدف، الگوریتم ساده شده ART غیر دقیق عصبی در ابتدا مورد بحث قرار گرفته و سپس مطالعات به‌منظور شبیه‌سازی گسترده مونت‌کارلو طرح شده است.

کلید واژه‌ها: کنترل کیفیت محصولات: شبکه عصبی ART غیر دقیق شبیه‌سازی مونت‌کارلو

کنترل کیفیت محصولات با بهره‌گیری از شبکه ART غیر دقیق

مقدمه

کنترل فرایند آماری (SPC) شیوه‌ای است برمبنای چند تکنیک که هدف از آن نظارت بر سنجرهای محصول فرایند تولید است. چارت‌های کنترل ابزارهای  هستند که گسترده‌ترین کاربرد را برای نشان دادن تنوع غیرطبیعی سنجرهای مورد نظارت قرار گرفته و قرارگیری دلایل قابل انتقال آنها دارند. برای استفاده از چارت کنترل، نمونه‌هایی از محصولات در طول فرایند تولید جمع‌آوری می‌شوند و آمارهای نمونه در چارت قرار می‌گیرند.

اگر فرایند در وضعیت طبیعی قرار داشته باشد، انتظار می‌رود آمارهای نمونه در محدوده‌های خاص کنترلی در نمودار قرار بگیرند. از سوی دیگر اگر دلیل خاصی از تنوع نمایان شود، آمارهای نمونه اصلاً در خارج از محدوده‌های کنترلی از پیش تعیین شده قرار می‌گیرند. وقتی تنوع غیرطبیعی در چارت کنترلی شکل می‌گیرد. دست‌اندرکاران به دنبال علت حاصل می‌گردند و اصطلاحات و تنظیمات ضروری را برای بازگرداندن فرایند به وضعیت طبیعی انجام می‌دهند.

امروزه با بهره‌برداری وسیع از تولید خودکار و بازرسی در چند محیط تولیدی، وظیفه SPC که به لحاظ سنتی با متخصصان کیفیت عمل می‌کرد. بایستی خودکار شود. شبکه‌های عصبی ابزارهای کارآمد و مورد اعتماد تجزیه و تحلیل هستند و در دهه اخیر، این ابزارها در کنترل کیفیت بسیار مورد استفاده قرار گرفته‌اند (Zorricassantine and Tannock, 1998).

آنچه موجب شهرت شبکه‌های عصبی است توانایی آنها برای آموختن از تجربه و اداره کردن اطلاعات نامطمئن و پیچیده در محیطی رقابتی و نیازمند کیفیت است. شبکه‌های عصبی به دلیل ظرفیت آنها برای کار با سنجرهای شلوغ بدون نیاز به فرضیه‌ای در خصوص توزیع آماری داده‌های مورد نظارت قرار گرفته، به‌ویژه برای کنترل کیفیت محققان چندی به کاربرد شبکه‌های عصبی برای کنترل کیفیت محصولات پرداخته‌اند.

پاگ (۱۹۹۱) اولین بار کاربرد شبکه عصبی را برای کنترل کیفیت پیشنهاد داد.

شبکه proception چندلایه ML.P به عنوان الگوریتم نظارتی قابل همانندسازی به‌منظور شناسایی میانگین جابه‌جایی مورد استفاده قرار گرفته است. گواو و دولی (۱۹۹۲) و اسمیت (۱۹۹۴) شبکه پرستپون چندلایه قابل همانندسازی (MLPBP) را برای شناسایی تغییرات مثبت، هم در میانگین و هم در واریانس، به کار گرفتند. چنگ(۱۹۹۵) بعدها شبکه عصبی MLPBP را برای شناسایی تغییرات مثبت و منفی و روندهای رو به بالا/ رو به پائین میانگین فرایند بر پرورش داده‌گاه و تنوک (۱۹۹۹) شبکه عصبی MLP BP را برای شناخت الگوی غیرطبیعی متقاطع توسعه دادند. کوک و ال (۲۰۰۱)، در مورد توسعه شبکه عصبی MLP BP برای شناسایی تغییرات واریانس پارامترهای فرایند به صورت ترتیبی دارای همبستگی بحث می‌کند.

شبکه MLP BP به طرز موفقیت‌آمیزی برای شناخت الگو مورد بهره‌برداری قرار گرفته است، اما کندی در پرورش آن هنوز عدم مطلوبیت‌هایی را برای به‌کارگیری عملی آن ایجاد کرده است. در واقع همگرایی الگوریتم BP نیازمند تعداد زیادی تکرار و همچنین تعداد مکفی از مشل‌های آموزشی است.

بنابراین سایر شبکه‌های عصبی از پیش تغذیه شده برای کنترل کیفیت در متون پیشنهاد شده است. برای مثال کوک و چیو (۱۹۹۸)، به‌منظور شناسایی تغییرات میانگین در پارامترهای فرایند و تولید دارای همبستگی خودکار، عملکرد شعاعی (RBF) را برای سیستم شبکه عصبی پیشنهاد کردند.

ویژگی مشترک اکثر شیوه‌های عصبی پراکنده برای کنترل کیفیت، بهره‌گیری از الگوریتم‌های کارآموزی سرپرستی است. استفاده از این تکنیک‌ها برمبنای این فرضیه است که کاربر از پیش گروه الگوهای غیرطبیعی را که بایستی به وسیله شبکه عصبی پیدا شود می‌شناسد.

دانش اولیه نسبت به اشکال الگو برای تولید داده‌های آموزشی که در برون داده‌های غیرطبیعی اصلی را تقلید می‌کند، ضروری است. با وجود این، در موارد صنعتی واقعی، محصولات فرایند غیرطبیعی را نمی‌توان به وسیله ظاهر الگوهای قابل پیش‌بینی نشان داد. بنابراین مدل‌های ریاضی درحال حاضر قابل دسترس نیستند یا نمی‌توانند فرموله شوند.

مقاله حاضر رویکرد متفاوتی را به شبکه عصبی برای فرایند نظارت پیشنهاد می‌کند، در زمانی که هیچ اطلاعات قبلی در خصوص توزیع داده‌های غیرطبیعی در دسترس نیست، رویکرد پیشنهادی برمبنای شبکه عصبی نظریه تشدید قابل سازگاریی (ART) است که قابلیت آموختن سریع ماندگار و فزاینده را دارد.

 

فرمت : قابل ویرایش | WORD | صفحات : ۳۴

******************************************

نکته : فایل فوق قابل ویرایش می باشد

برای مشاهده سایر عناوین برروی لینک زیر کلیک بفرمایید

برای خرید اطلاعات خود را وارد کنید
  • کلیه پرداخت های سایت از طریق درگاه بانک سامان انجام می گیرد.هر مرحله از خرید می توانید مشکل خود را با پشتیبان و فرم تماس با ما در جریان بگذارید در سریعترین زمان ممکن مشکل برطرف خواهد شد
  • پس از پرداخت وجه ، فایل محصول هم قابل دانلود می باشد و هم به ایمیل شما ارسال می گردد .
  • آدرس ایمیل را بدون www وارد نمایید و در صورت نداشتن ایمیل فایل به تلگرام شما ارسال خواهد شد .
  • در صورت داشتن هرگونه سوال و مشکل در پروسه خرید می توانید با پشتیبانی سایت تماس بگیرید.
  • پشتیبان سایت با شماره 09383646575 در هر لحظه همراه و پاسخگوی شماست
  • 0

    امتیاز 5.00 ( 1 رای )
    اشتراک گذاری مطلب

    راهنما

    » فراموش نکنید! بخش پشتیبانی مقاله آنلاین ، در همه ساعات همراه شماست

    اطلاعات ارتباطی ما پست الکترونیکی: Article.university@gmail.com

    تماس با پشتیبانی+ ایدی تلگرام 09383646575

    برای سفارشتان از سایت ما کمال تشکر را داریم.

    از اینکه ما را انتخاب نمودید متشکریم.

    معادله فوق را حل نمایید *

    تمام حقوق مادی , معنوی , مطالب و طرح قالب برای این سایت محفوظ است